Water and Sediment Control Basin (WASCoB) Design Information Sheet (Single WASCoB System)

Note: Use this Design Information Sheet if only one WASCoB is to be constructed and drained through a single subsurface tile outlet.

WASCoB Identification

1. Watershed area \qquad ha \qquad ac
2. Watershed slope \qquad \%
3. Runoff curve number from Tables 2.2 - 2.4
4. Peak flow from watershed for 10-year storm from Table $4.25-\mathrm{M}$ to $4.31-\mathrm{M}$ (4.25-I to $4.31-\mathrm{I})$
\qquad $\mathrm{m}^{3} / \mathrm{s}$ \qquad $\mathrm{ft}^{3} / \mathrm{s}$
5. Peak flow from watershed for 25-year storm from Table 4.25-M to 4.31-M (4.25-I to 4.31-I)
\qquad $\mathrm{m}^{3} / \mathrm{s}$ \qquad $\mathrm{ft}^{3} / \mathrm{s}$
6. Obtain the storm duration for a 10 -year storm from Table $4.25-\mathrm{M}$ to $4.31-\mathrm{M}$ (4.25-I to $4.31-\mathrm{I})$
\qquad hrs
7. Obtain the storm volume expected for a 10 -year storm from Table $4.25-\mathrm{M}$ to $4.31-\mathrm{M}(4.25-\mathrm{I}$ to $4.31-\mathrm{I})$
\qquad m^{3} \qquad ft^{3}
8. Determine slope of ponding area upstream from storage berm from field measurements
\qquad \%
9. Determine slope of side of ponding area upstream from storage berm from field measurements. If side slopes are different use the average of the two slopes. \qquad \%
10. Determine soil loss expected above ponding area from Table 4.32-M (4.32-I)
\qquad tonnes/ha/yr \qquad tons/ac/yr
11. Storage required for eroded soil for 15 -year life expectancy Line (10) \qquad x Line (1) \qquad $\times 15=$ \qquad tonnes $\times 0.68 \mathrm{~m}^{3} /$ tonne $=$ \qquad m^{3} Line (10) \qquad x Line (1) \qquad $\times 15=$ \qquad tons $\times 21.7 \mathrm{ft}^{3} /$ ton $=$ \qquad ft^{3})
\qquad m^{3} \qquad ft^{3}
12.Total pond storage

Line (7) \qquad + Line (11) \qquad $=$ \qquad m^{3} \qquad ft^{3}) \qquad m^{3} \qquad ft^{3}
13. Determine volume factor

Line (12) \qquad x Line (8) \qquad x Line (9) \qquad $=$ \qquad m^{3} \qquad ft^{3})
\qquad m^{3} \qquad ft^{3}
14. Obtain pond depth (design berm height) from Table 4.33-M (4.33-I) \qquad m \qquad ft 15. Determine pond length Line (14) \qquad \div Line (8) \qquad $x 100=$ \qquad m \qquad ft)
\qquad m \qquad ft
16. Determine maximum pond width Line (14) \qquad \div Line (9) \qquad $\times 200=$ \qquad $\times 200=$ \qquad m \qquad ft) m \qquad ft
If pond side slopes vary by more than 50%, the calculated pond width will be different than the actual field pond width. For accuracy, separate the sides and calculate individually.
17. Obtain maximum flooding time from Table 4.34 \qquad hrs
18. Determine outlet capacity

Line 7 \qquad \div Line (17) \qquad - Line (6) \qquad $x 0.000277=$ \qquad $\mathrm{m}^{3} / \mathrm{s}($ \qquad $\left.\mathrm{ft}^{3} / \mathrm{s}\right)$
19. Determine the riser pipe and horizontal pipe sizes. Complete the following:

- horizontal pipe slope \qquad \%
- horizontal pipe diameter (Table 4.18-M (4.18-I) or Figure 4.31 or OMAFRA Publication 29, Drainage Guide for Ontario
- riser pipe diameter (Tables 4.19-M to 4.22-M (4.19-I to 4.22-I))
\qquad in
- orifice diameter (if required) (Tables 4.21-M to 4.22-M (4.21-I to $\overline{4.22-\mathrm{I}) \text {) }}$
\qquad mm \qquad in

21. Determine emergency overflow spillway capacity from Line (5) \qquad $\mathrm{m}^{3} / \mathrm{s}$ \qquad $\mathrm{ft}^{3} / \mathrm{s}$
22. Determine emergency overflow spillway notch dimensions from Table 4.35-M (4.35-I) to meet capacity requirements from Line (21)

$$
\begin{aligned}
& \text { - notch width (L) } \\
& \text { - notch depth (D) }
\end{aligned}
$$

\qquad m \qquad ft
m \qquad ft
23. Actual berm height (Note: Freeboard is 10% of Line (14) to maximum of 0.15 m (6 in .)) Line (14) \qquad + freeboard \qquad + notch depth (D) (Line (22)) \qquad =
\qquad
m ft)
24. Actual berm length

Line 23 \qquad \div Line (9) \qquad $\times 200=$ \qquad m(\qquad ft)
25. Berm side slope (minimum 2:1, maximum 8:1) \qquad :1
26.Top width of berm (Note: Default width of $1.2 \mathrm{~m}(4 \mathrm{ft})$) \qquad 1.2 m \qquad 4 ft
27.Bottom width of berm Line (26) \qquad $+(2 \times$ Line (23) \qquad x Line (25) \qquad) $=$ \qquad m (\qquad ft)
28.Earth volume for berm from Table 4.36-M to 4.38-M (4.36-I to 4.38-I) \qquad m^{3} \qquad $y^{\prime}{ }^{3}$

