

Water and Sediment Control Basin (WASCoB) Design Information Sheet (Single WASCoB System)

Note: Use this Design Information Sheet if only one WASCoB is to be constructed and drained through a single subsurface tile outlet.

WASCOB Iden 1. Watershed				ha	ac
2. Watershed	siope			-	%
3. Runoff curv	e number from Tal	oles 2.2 – 2.4			
4. Peak flow f	rom watershed for	10-year storm fro	m Table 4.25-M to 4.31		
				m³/s	ft³/s
5. Peak flow f	rom watershed for	25-year storm fro	m Table 4.25-M to 4.31		
				m³/s	ft ³ /s
6. Obtain the	storm duration for	a 10-vear storm f	rom Table 4.25-M to 4.3	، 31-M (4.25-I to	4.31-I)
		,			hrs
7 Obtain the	storm volumo ovno	octed for a 10 year	storm from Table 4.25	-N4+0 4 21-N4/4	25-I +o / 21-I\
7. Obtain the	storiii volullie expe	ected for a 10-year	Storm from rable 4.25	-101 to 4.51-101(4 m ³ _	•
		_			
8. Determine	slope of ponding a	rea upstream fron	n storage berm from fie	ld measuremen	its %
				-	/0
	•	•	nm from storage berm f	rom field meası	urements. If
side slopes ar	e different use the	average of the tw	o slopes.	-	%
10. Determine	e soil loss expected	above ponding ar	ea from Table 4.32-M (4.32-I)	
	•		•	es/ha/yr	tons/ac/yr
11 Ctorogo ro	aniral for aradad	soil for 15 year life	o ovnostansv		
	equired for eroded : x Line (1)		e expectancy tonnes x 0.68 m ³ /to	onne =	m^3
Line (10)	x Line (1)	x 15 =	tons x 21.7 ft ³ /ton	=ft ³)	···
				m^3	ft ³

12.Total pond st	orage						
Line (7)	_ + Line (11)	=	m³ (ft ³)		m³	ft³
13. Determine v	olume factor						
Line (12)	x Line (8)	x Line (9)_	=	m ³		ft³) m³	ft³
14. Obtain pond	depth (design be	rm height) fron	n Table 4.3	3-M (4.33-I)		m	ft
15. Determine p	ond length						
Line (14)	÷ Line (8)	x 100 =	m (_	ft)		m	ft
16. Determine n	naximum pond wi	dth					
	÷ Line (9)		x 2	.00 =	m (6.
	nes vary by more to accuracy, se					m erent than t	
17. Obtain maxi	mum flooding tim	e from Table 4.	.34		-	h	nrs
18. Determine o	outlet capacity ÷ Line (17)	Line (6)	x 0	.000277 =	m ³	³/s (ft³/s)
	he riser pipe and I	norizontal pipe	sizes. Com	plete the foll	owing:		
	ntal pipe slope ntal pipe diameter	·/Table // 10 N/	// 10 I\ or	Figure 4.21	- 	% A Dublicati	
	Guide for Ontari	•	(4.16-1) 01	rigule 4.51 (mm	
– riser pi	pe diameter (Tabl	es 4.19-M to 4	.22-M (4.19	9-I to 4.22-I))		mm	in
– orifice	diameter (if requi	red) (Tables 4.2	21-M to 4.2	2-M (4.21-I t		mm	
		, ,		`		mm	in
21. Determine e	mergency overflo	w spillway capa	acity from I	ine (5)		m³/s	ft³/s
	mergency overflo	• •	ch dimensio	ons from Tab	le 4.35-M	(4.35-I) to	meet
– notch v	ments from Line (width (L)	(21)				m	ft
	depth (D)				-	 	ft

23. Actual berm height (Note: Freeboard is 10% of Line (14) to maximum of 0	.15 m (6 in.))	
Line (14) + freeboard + notch depth (D) (Line (22))	=	
	m (ft)
24. Actual berm length		
Line 23 ÷ Line (9) x 200 =	m (ft)
25. Berm side slope (minimum 2:1, maximum 8:1)		:1
26.Top width of berm (Note: Default width of 1.2 m (4 ft))	1.2 m	4 ft
27.Bottom width of berm		
Line (26) + (2 x Line (23) x Line (25)) =	m (ft)
28.Earth volume for berm from Table 4.36-M to 4.38-M (4.36-I to 4.38-I)	m^3	yd ³